
Toward Efficient Gradual Typing
for Structural Types via Coercions

Andre Kuhlenschmidt
Indiana University

USA
akuhlens@indiana.edu

Deyaaeldeen Almahallawi
Indiana University

USA
dalmahal@indiana.edu

Jeremy G. Siek
Indiana University

USA
jsiek@indiana.edu

Abstract
Gradual typing combines static and dynamic typing in the
same program. Siek et al. (2015) describe five criteria for
gradually typed languages, including type soundness and the
gradual guarantee. A significant number of languages have
been developed in academia and industry that support some
of these criteria (TypeScript, Typed Racket, Safe TypeScript,
Transient Reticulated Python, Thorn, etc.), but relatively few
support all the criteria (Nom, Gradualtalk, Guarded Reticu-
lated Python). Of those that do, only Nom does so efficiently.
The Nom experiment shows that one can achieve efficient
gradual typing in languages with only nominal types, but
many languages have structural types: function types, tuples,
record and object types, generics, etc.
In this paper we present a compiler, named Grift, that

addresses the difficult challenge of efficient gradual typing
for structural types. The input language includes a selection
of difficult features: first-class functions, mutable arrays, and
recursive types. We show that a close-to-the-metal imple-
mentation of run-time casts inspired by Henglein’s coercions
eliminates all of the catastrophic slowdowns without intro-
ducing significant average-case overhead. As a result, Grift
exhibits lower overheads than those of Typed Racket.

CCS Concepts • Software and its engineering→Com-
pilers; General programming languages.

Keywords gradual typing, compilation, efficiency
ACM Reference Format:
Andre Kuhlenschmidt, Deyaaeldeen Almahallawi, and Jeremy G.
Siek. 2019. Toward Efficient Gradual Typing for Structural Types
via Coercions. In Proceedings of the 40th ACM SIGPLAN Conference
on Programming Language Design and Implementation (PLDI ’19),
June 22–26, 2019, Phoenix, AZ, USA. ACM, New York, NY, USA,
24 pages. https://doi.org/10.1145/3314221.3314627

This work is licensed under a Creative Commons Attribution 4.0 Interna-
tional License.
PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA
© 2019 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-6712-7/19/06.
https://doi.org/10.1145/3314221.3314627

1 Introduction
Gradual typing combines static and dynamic type checking,
giving the programmer control over which typing discipline
to be used in each region of code [5, 30, 50, 61]. In the past
decade, considerable progress has beenmade on the theory of
gradual typing, such as understanding interactions with ob-
jects [51], generics [3, 4, 37, 38], mutable state [35, 56], recur-
sive and set-theoretic types [14, 53], control operators [46],
and type inference [23, 54].

Beginning with the observations of Herman et al. [35, 36],
that the standard operational semantics for the Gradual
Typed Lambda Calculus can exhibit unbounded space leaks,
and continuing with the experiments of Takikawa et al. [59],
which showed that Typed Racket [62] exhibits high over-
heads on real programs, it has become clear that efficiency is
a serious concern for gradually typed languages. To address
this concern, the research community has made some first
steps towards answering the important scientific question:
What is the essential overhead of gradual typing? This is a
difficult and complex question to answer. First, there is a
large language design space: choices regarding the seman-
tics of a gradually typed language have significant impacts
on efficiency. Second, there is the engineering challenge of
developing the implementation technology necessary for per-
formance evaluations. Third, there is the scientific challenge
of inventing techniques to improve efficiency. We discuss
these three aspects in the following paragraphs and describe
where our research program fits in. While we cannot hope
to outright answer this question, our paper eliminates some
spurious factors and provides a rigorous baseline for further
experimentation.

The Language Design Space Siek et al. [55] describe five
criteria for gradually typed languages, including type sound-
ness and the gradual guarantee. The type soundness criteria
requires that the value of an expression must have the type
that was predicted by the type system. The gradual guaran-
tee states that changing type annotations should not change
the semantics of the program, except that incorrect type
annotations may induce compile-time or run-time errors.
For expediency, many languages from industry (Type-

Script [9, 33], Hack [63], and Flow [1]) are implemented by
erasing types and compiling to untyped languages. This ap-
proach does not provide type soundness in the above sense.

https://doi.org/10.1145/3314221.3314627
https://doi.org/10.1145/3314221.3314627

PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA Andre Kuhlenschmidt, Deyaaeldeen Almahallawi, and Jeremy G. Siek

Gradual Guarantee wrt.
Language Sound Structural Types Nominal Types Granularity Approach Space-Efficient
Gradualtalk Fine Retrofit #

Guarded Reticulated Python Fine Retrofit #
Nom – Fine From-Scratch

GTLC+ – Fine From-Scratch
TypeScript # Fine Retrofit

Safe TypeScript # # Fine Retrofit
Typed Racket G# G# Coarse Retrofit

Transient Reticulated Python G# Fine Retrofit

Figure 1. A comparison of gradually typed programming languages.

Several of the designs from academia (Thorn [10], TS⋆ [58],
Safe TypeScript [43, 44], and Strong Script [45]) place restric-
tions on which implicit casts are allowed, for the sake of
efficiency, but at the price of losing the gradual guarantee.
The fundamental tension is that providing both the gradual
guarantee and type soundness means that an implementa-
tion must perform runtime type checking at the boundaries
between statically typed and dynamically typed regions of
code, and that runtime checking can be time consuming.

We note that Typed Racket is sound and partially supports
the gradual guarantee: its type system does not satisfy the
static part of the gradual guarantee because it requires what
amounts to an explicit downcast to use a Racket module from
a Typed Racket module. However, the semantics of Typed
Racket’s runtime checks are compatible with the dynamic
part of the gradual guarantee.

Another aspect of the language design space that impacts
efficiency is whether a gradually typed language includes
structural or nominal types. With nominal types, the run-
time check for whether a value has a given type is efficient
and straightforward to implement. Indeed, Muehlboeck and
Tate [42] show that Nom, a nominally-typed object-oriented
language (without generics or function types), exhibits low
overhead on the sieve and snake benchmarks from the
Gradual Typing Performance Benchmarks [2]. On the other
hand, with structural types, the runtime check can be much
more complex, e.g., for higher-order types it may involve the
use of a proxy to mediate between a value and its context.
Finally, gradual typing can be applied at varying gran-

ularities. For example, in Typed Racket, a module may be
typed or untyped. We refer to this as coarse-grained grad-
ual typing. In contrast, in TypeScript [9, 33] and Reticulated
Python [64, 65], each variable may be typed or untyped, and
furthermore, a type annotation can be partial through the
use of the unknown type. We refer to this as fine-grained
gradual typing.
In this paper we study the efficiency of gradual typed

languages that satisfy the five criteria, that include structural
types, and that employ fine-grained gradual typing.

Implementation Technology A popular approach to
implementing gradually typed languages is to retrofit a pre-
existing language implementation. The benefit of this ap-
proach is that it quickly provides support for large number
of language features, facilitating performance evaluations on
a large number of real programs. The downside is that the
pre-existing implementation was not designed for gradual
typing and may include choices that interfere with obtaining
efficiency on partially typed programs. Many of the gradually
typed languages to date have been implemented via compila-
tion to a dynamically typed language, including TypeScript,
Typed Racket, Gradualtalk, Reticulated Python, and many
more. These implementations incur incidental overhead in
the statically typed regions of a program.

The opposite approach is to develop a from-scratch imple-
mentation of a gradually typed language. The benefit is that
its authors can tailor every aspect of the implementation for
efficient gradual typing, but an enormous engineering effort
is needed to implement all the language features necessary
to run real programs.

For a gradually typed language, one of the most important
choices is how to implement runtime type checks. For expe-
diency, Typed Racket uses the Racket contract library [21].
The contract library is more general than is necessary be-
cause it supports arbitrary predicates instead of just type
tests. In subsequent years since the experiment of Takikawa
et al. [59], several performance problems have been fixed,
as reported by Bauman et al. [7]. It is unclear how much
performance is left on the table given the extra layers of
abstraction and indirection in the contract library.
To better isolate the essential overheads of gradual typ-

ing, this paper studies a from-scratch implementation in
the context of a simple ahead-of-time compiler with a close-
to-the-metal implementation of runtime type checks. The
alternative of using just-in-time compilation is a fascinat-
ing one [7, 44], but we think it is important to also study
an implementation whose performance is more predictable,
enabling us to more easily isolate the causes of overhead.

Innovations to Improve Efficiency Perhaps themost chal-
lenging obstacle to determining the essential overhead of

Toward Efficient Gradual Typing PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA

gradual typing is that, creative researchers continue to make
innovations that can lower the overhead of gradual typing!
To make claims about the essential overhead of gradual typ-
ing, these ideas must be implemented and evaluated.

Herman et al. [35, 36] observed that the coercions of Hen-
glein [34] (originally designed for the compile-time optimiza-
tion of dynamically typed languages) could be used to guar-
antee space efficiency in the proxies needed for higher-order
structural types by normalizing coercions. Space efficiency
is guaranteed because arbitrarily long sequence of coercions
can always be compressed into an equivalent coercion of
length three or less. Thus, the size of a coercion c in normal
form is bounded by its height h, size(c) ≤ 5(2h − 1). The
height of the coercions generated at compile time and run-
time are bounded by the height of the types in the source
program. Thus, at any moment during program execution,
the amount of space used by the program isO(n), where n is
the amount of space ignoring coercions. To date the research
on coercions for gradual typing has been of a theoretical
nature. The Grift compiler is the first to empirically test the
use of coercions to implement runtime casts for gradually
typed languages.
For implementations that rely on contracts for runtime

checking, space efficiency is also a concern and Greenberg
[26] discovered a way to compress sequences of contracts,
making them space efficient. Feltey et al. [20] implement
this technique, collapsible contracts, in the Racket contract
library and demonstrate that it significantly improves the
performance of Typed Racket on some benchmarks. How-
ever, contracts cannot be compressed to the same degree as
coercions (predicates are more expressive than types), which
means that the time overhead has larger constant factors,
factors that depend on the total number of contracts in a pro-
gram. In our evaluation we compare to a version of Racket
uses collapsible contracts.
Another innovation is the notion of monotonic references

of Siek et al. [56], which has the potential to eliminate the
overhead of gradual typing in statically typed regions of
code. Richards et al. [44] shows that monotonic references
reduce overhead in the context of a JIT implementation of
Safe TypeScript. In a forthcoming paper we demonstrate that
monotonic references also reduce overhead in the context of
the Grift compiler.
In this paper we present evidence that efficiency can be

achieved in a fine-grained gradually typed language with
structural types. We build and evaluate an ahead-of-time
compiler, named Grift, that uses carefully chosen runtime
representations to implement coercions.

The input language includes a selection language features
that are difficult to implement efficiently in a gradually typed
language: first-class functions, mutable arrays, and equire-
cursive types. The language is an extension of the Gradually
Typed Lambda Calculus, abbreviated GTLC+.

Figure 1 summarizes the discussion up to this point. The
top-half of the table lists four languages that meet the cri-
teria for gradual typing whereas the bottom-half includes
languages that do not provide type soundness and/or the
gradual guarantee. Compared to the other three languages
that satisfy the criteria, the GTLC+ language (and Grift com-
piler) described in this paper is novel in its support for struc-
tural types and guaranteed space efficiency.

Road Map The paper continues as follows.
• Section 2 provides background on gradual typing.
• Section 3 describes the implementation of the compiler.
• Section 4 presents an empirical performance evalua-
tion of the techniques used in Grift. In particular,
– Section 4.2 shows that coercions eliminate catastrophic
slowdownswithout adding significant overhead com-
pared to traditional casts.

– Section 4.3 evaluates the performance of Grift on
typed, untyped, and partially typed benchmarks. To
put these results in context we make comparisons
to other programming language implementations.

2 Background on Gradual Typing
From a language design perspective, gradual typing touches
both the type system and the operational semantics. The
key to the type system is the consistency relation on types,
which enables implicit casts to and from the unknown type,
here written Dyn, while still catching static type errors [5,
30, 50]. The dynamic semantics for gradual typing is closely
related to the semantics of contracts [21, 25], coercions [34],
and interlanguage migration [41, 61]. Because of the shared
mechanisms with these other lines of research, much of
the ongoing research in those areas benefits the theory of
gradual typing, and vice versa [15, 17, 18, 27, 28, 31, 40, 57].
In the rest of this section we give a brief introduction to
gradual typing and describe the performance challenges.

Consider the classic example of Herman et al. [35] shown
in Figure 2. Two mutually recursive functions, even? and
odd?, are written in GTLC+. This example uses continuation
passing style to concisely illustrate efficiency challenges in
gradual typing. While this example is contrived, the same
problems occur in real programs under complex situations
[20]. On the left side of the figure we have a partially typed
function, named even?, that checks if an integer is even. On
the right side of the figure we have a fully typed function,
named odd?, that checks if an integer is odd. With gradual
typing, both functions are well typed because implicit casts
are allowed to and from Dyn. For example, in even? the pa-
rameter n is implicitly cast from Dyn to Int when it is used as
the argument to = and -. These casts check that the dynamic
value is tagged as an integer and perform the conversion
needed between the representation of tagged values and in-
tegers. Conversely, the value #t is cast to Dyn because it is
used as the argument to a function that expects Dyn. This

PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA Andre Kuhlenschmidt, Deyaaeldeen Almahallawi, and Jeremy G. Siek

(define even? : (Dyn (Dyn -> Bool) -> Bool)

(lambda ([n : Dyn] [k : (Dyn -> Bool)])

(if (= n 0)

(k #t)

(odd? (- n 1) k))))

(define odd? : (Int (Bool -> Bool) -> Bool)

(lambda ([n : Int] [k : (Bool -> Bool)])

(if (= n 0)

(k #f)

(even? (- n 1) k))))

Figure 2. Gradually typed even? and odd? functions that
have been written in continuation passing style.

cast tags the value with runtime type information so that
later uses can be checked. Likewise, in odd? the Int passed
as the first argument to even? is cast to Dyn.
In addition to casts directly to and from Dyn, gradual typ-

ing supports casting between types that have no conflict-
ing static type information. Such types are said to be con-
sistent. The types of the variables named k, (Dyn -> Bool)

and (Bool -> Bool) are consistent with each other. As such,
when k is passed as an argument to even? or odd?, there is
an implicit cast between these two types. This cast is tradi-
tionally implemented by wrapping the function with a proxy
that checks the argument and return values [21], but Herman
et al. [35] observe that the value of k passes through this cast
at each iteration, causing a build up of proxies that changes
the space complexity from constant to O(n).

In this paper we consider two approaches to the implemen-
tation of runtime casts: traditional casts, which we refer to
as type-based casts, and coercions. Type-based casts provide
the most straightforward implementation, but the proxies
they generate can accumulate and consume an unbounded
amount of space as discussed above.

Getting back to the even? and odd? example, we compare
the time and space of type-based casts versus coercions in
Figure 4 (left hand side). The three plots show the runtime,
number of casts performed, and length of the longest chain
of proxies, as the input parameter n is increased. The plot
concerning longest proxy chains shows that type-based casts
accumulate longer chains of proxies as we increase parame-
ter n. On the other hand, coercions use a constant amount
of space by compressing these proxies chains into a single
proxy of constant size.

The appearance of long proxy chains can also change the
time complexity of a program. We refer to such a change as a
catastrophic slowdown. Figure 3 shows the code for the quick-
sort algorithm. The program is statically typed except for
the the vector parameter of sort!. The single Dyn annotation
in this type causes runtime overhead inside the auxiliary

(define sort! : ((Vect Int) Int Int -> ())

(lambda ([v : (Vect Dyn)]

[lo : Int] [hi : Int])

(when (< lo hi)

(let ([pivot : Int (partition! v lo hi)])

(sort! v lo (- pivot 1))

(sort! v (+ pivot 1) hi)))))

(define swap! : ((Vect Int) Int Int -> ())

(lambda ([v : (Vect Int)] [i : Int] [j : Int])

(let ([tmp : Int (vector-ref v i)])

(vector-set! v i (vector-ref v j))

(vector-set! v j tmp1))))

(define partition! : ((Vect Int) Int Int -> Int)

(lambda ([v : (Vect Int)] [l : Int] [h : Int])

(let ([p : Int (vector-ref v h)]

[i : (Ref Int) (box (- h 1))])

(repeat (j l h)

(when (<= (vector-ref v j) p)

(box-set! i (+ (unbox i) 1))

(swap! v (unbox i) j)))

(swap! v (+ (unbox i) 1) h)

(+ (unbox i) 1))))

Figure 3. The sort! function implements the Quicksort al-
gorithm in the GTLC+.

partition! and swap! functions. Like function types, refer-
ence types require proxying that apply casts during read
and write operations. Again, a naive implementation of casts
allows the proxies to accumulate; each recursive call to sort!

causes a cast that adds a proxy to the vector being sorted. In
quicksort, this changes the worst-case time complexity from
O(n2) to O(n3) because each read (vector-ref) and write
(vector-set!) traverses a chain of proxies of length O(n).

Returning to Figure 4, but focusing on the right-hand side
plots for quicksort, we observe that, for typed-based casts,
the longest proxy chain grows as we increase the size of the
array being sorted. On the other hand, coercions do extra
work at each step to compress the cast. As a result they
pay more overhead for each cast, but when they use the
casted value later the overhead is guaranteed to be constant.
This can be seen in the way the runtime grows rapidly for
type-based casts, while coercions remain (relatively) low.
We confirmed via polynomial regression that the type-based
cast implementation’s runtime is modeled by a third degree
polynomial, i.e. O(n3).

Review of Coercions Coercions are combinators that spec-
ify how to convert from one type to another type. The fol-
lowing grammar shows the coercions needed to represent
casts between types that include the unknown type Dyn, base

Toward Efficient Gradual Typing PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA

Figure 4. The runtime, number of casts, and longest proxy chain (y-axes) as we increase the parameter n (x-axis) for even/odd
(left) and the array length (x-axis) for quicksort (right). The plots for longest proxy chain show that coercions compress casts
and thus operate in constant space. The plot of runtime for quicksort shows that long proxy chains can also increase the
asymptotic time complexity of an algorithm.

types (integers and Booleans), function types, products, and
mutable references.

T ::= Dyn | Int | Bool | T → T | T ×T | Ref T
c,d ::= T ?p | T ! | ι | c ; d | ⊥p | c → d | c × d | Ref c d

The coercionT ?p is a projection that checkswhether a tagged
value is of type T . If it is, the underlying value is returned.
If not, an error is signaled at the source location p (a blame
label). The coercion T ! in an injection that tags a value with
its type. The identity coercion ι just returns the input value.
The sequence c ; d applies the coercion c then d . The failure
coercion ⊥p signals an error when applied to a value. A
function coercion c → d changes the type of a function
by applying c to the argument and d to the return value. A
product coercion c×d changes the type of a pair by applying c
to the first element and d to the second. A reference coercion
Ref c d changes the type of a mutable reference by applying
c when reading and d when writing.

Siek et al. [52] define a recursive composition operator,
written c # d , that takes two coercions in normal form and
directly computes the normal form of sequencing them to-
gether. The Grift compiler implements this approach using
efficient bit-level representations.

3 The Grift Compiler
Grift compiles the GTLC+ to C, then uses the Clang compiler
to generate x86 executables. The Clang compiler provides
low level optimizations. The GTLC+ language includes base
types such as integers (fixnums), double precision floats, and
Booleans but does not support implicit conversions between
base types (i.e. no numeric tower). The GTLC+ also includes
structural types such as n-ary tuples, mutable vectors, and
higher-order functions. Figure 5 defines the syntax of the
GTLC+; the operational semantics is defined in Appendix B.
Grift does not yet implement space-efficient tail recursion,
but Herman et al. [35] and Siek and Garcia [48] describe
implementation strategies for doing so. This section presents
a high level description of the techniques used to generate
code for coercions. The code for Grift is available at the URL
https://github.com/Gradual-Typing/Grift/tree/pldi19.
The first step in the Grift compiler is to translate to an

intermediate language with explicit casts. This process is
standard [36, 47, 50] except that we add a local optimiza-
tion to avoid unnecessary casts in untyped code. The stan-
dard cast insertion algorithm [55] can cause unnecessary
overhead in untyped regions of code. Consider the function
(lambda ([f : Dyn]) (f 42)) which applies a dynamically
typed value f as a function. The standard algorithm would
compile it to:

https://github.com/Gradual-Typing/Grift/tree/pldi19

PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA Andre Kuhlenschmidt, Deyaaeldeen Almahallawi, and Jeremy G. Siek

Variables x ::= (lisp style identifiers)
Characters c ::= (lisp style character literals)
Integers i ::= (signed 61 bit integers)
Floats f ::= (double precision floating point numbers)
Blame Label l ::= (double quoted strings)
Types T ::= x | Dyn | Unit | Bool | Int | Char | Float | (T . . .->T) | (TupleT . . .) | (RefT)|(VectT)|(Recx T)
Literals V ::= () | #f | #t | c | i | f
Operators O ::= + | - | * | / | < | <= | = | >= | > | fl+ | fl- | fl* | fl/ | fl< | fl<= | fl= | fl>= | fl>

| int->char | char->int | float->int | int->float
| print-int | read-int | print-float | print-char | read-char

Parameters F ::= x | (x : T)
Expressions E ::= V | (O E . . .) | (annET l) | (ifE E E) | (timeE) | x | (lambda (F . . .) : T E) | (E E . . .)

| (let ([x : T E] . . .)E . . .) | (letrec ([x : T E] . . .)E . . .) | (tupleE . . .) | (tuple-projE i)
| (repeat (x E E) [(x E)]E) | (beginE . . . E) | (boxE) | (unboxE) | (box-set!E E)
| (make-vectorE E) | (vector-refE E) | (vector-set!E E E) | (vector-lengthE)

Definitions D ::= (definex : T E) | (define (x F . . .) : T E . . .) | E
Program P ::= D . . .

Figure 5. The syntax of the GTLC+ as supported by Grift. This grammar shows every major syntactic form available in GTLC+,
and presents a handful of the operators. Most type annotations can be omitted by dropping the preceding “:”. The syntax for
the omitting type annotations in the exception, formal parameters, is shown in the grammar.

(lambda ([f : Dyn])

((cast f Dyn (Dyn -> Dyn) L) (cast 42 Int Dyn L)))

The cast on f will allocate a function proxy if the source
type of f is anything but (Dyn -> Dyn). Although the proxy
is important to obtain the desired semantics, the allocation is
unnecessary in this case because the proxy is used right away
and never used again. Instead, Grift specializes these cases
by generating code that does what a proxy would do without
actually allocating one. Grift applies this optimization to
proxied references and tuples as well.
The next step in the compiler exposes the runtime func-

tions that implement casts. We describe the representation
of values in 3.1. We describe the implementation of coercions
in Section 3.2. After lowering casts, Grift performs closure
conversion using a flat representation [6, 12, 13], and trans-
lates all constructors and destructors to memory allocations,
reads, writes, and numeric manipulation.
For memory allocation and reclamation, Grift uses the

Boehm-Demers-Weiser conservative garbage collector [11,
16]. Grift optimizes closures, for example, translating some
closure applications into direct function calls using the tech-
niques of Keep et al. [39]. Grift does not perform any other
general-purpose or global optimizations, such as type infer-
ence and specialization, constant folding, copy propagation,
or inlining. On the other hand, the compiler does specialize
casts based on their source and target type and it specializes
operations on proxies.

3.1 Value Representation
Values are represented according to their type. An Int value
is a 61-bit integer stored in 64-bits. A Bool value is also

stored in 64-bits, using the C encoding of 1 for true and 0 for
false. A function value is a pointer to one of two different
kinds of closures; the lowest bit of the pointer indicates
which kind. The first kind, for regular functions, is a flat
closure that consists of 1) a function pointer, 2) a pointer to a
function for casting the closure, and 3) the values of the free
variables. The second kind of closure, which we call a proxy
closure, is for functions that have been cast. It consists of 1)
a function pointer (to a “wrapper” function), 2) a pointer to
the underlying closure, and 3) a pointer to a coercion.
A value of reference type is a pointer to the data or to a

proxy. The lowest bit of the pointer indicates which. A proxy
consists of a reference and a pointer to a reference coercion.
A value of type Dyn is a 64-bit integer, with the 3 lowest bits
indicating the type of the value that has been injected (i.e.
cast into the Dyn type). For types whose values can fit in
61 bits (e.g. Int and Bool), the injected value is stored inline.
For types with larger values, the 61 bits are a pointer to a
pair of 64-bit items that contain the injected value and its
type. In the following section, the macros for allocating and
accessing values have all uppercase names to distinguish
them from C functions. The macro definitions are listed in
Appendix A.

3.2 Implementation of Coercions
Coercions are represented by heap allocated values. In Grift,
the coercions that are statically known are allocated once
at the start of the program. The runtime function coerce,
described below, implements coercion application. To do
so, it interprets the coercion and performs the actions it
represents to the value.

Toward Efficient Gradual Typing PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA

Coercions are represented as 64-bit values where the low-
est 3 bits indicate whether the coercion is a projection, injec-
tion, sequence, failure, or identity. For an identity coercion,
the remaining 61 bits are not used. For the other coercions,
the 61 bits store a pointer to heap-allocated structures that
we describe below. Because the number of pointer tags is lim-
ited, the function, reference, tuple, and recursive coercions
are differentiated by a secondary tag stored in the first word
of their heap-allocated structure. The C type definitions for
coercions are included in Appendix A.

• Projection coercions (T ?p) cast from Dyn to a type T .
The runtime representation is 2×64 bits: the first word
is a pointer to the type T and the second is a pointer
to the blame label p.

• Injection coercions (T !) cast from an arbitrary type to
Dyn. The runtime representation is 64 bits, holding a
pointer to the type T .

• Function coercions (c1, . . . , cn → d) cast between two
function types of the same arity. A coercion for a func-
tion withn parameters is represented in 64×(n+2) bits,
where the first word stores the secondary tag and ar-
ity, the second stores a coercion on the return, and the
remaining words store n coercions for the arguments.

• Reference coercions (Ref c d) cast between box types
or vector types and are represented as 3 × 64 bits,
including the secondary tag, a coercion for writing,
and another coercion for reading.

• Tuple coercions cast between twon-tuple types and are
represented as 64×(n+1) bits, including the secondary
tag, the length of the tuple, and a coercion for each
element of the tuple.

• Recursive coercions (Rec x .c) serve as targets for back
edges in “infinite” coercions created by casting be-
tween equirecursive types. They are represented in
2 × 64 bits for a secondary tag and a pointer to a coer-
cion whose subcoercions can contain a pointer to this
coercion.

• Sequences coercions (c ; d) apply coercion c then coer-
cion d and store two coercions in 2 × 64 bits.

• Failure coercions (⊥p) immediately halt the program
and are represented in 64 bits to store a pointer to the
blame label.

Applying a Coercion The application of a coercion to a
value is implemented by a C function named coerce, shown
in Figure 6, that takes a value and a coercion and either
returns a value or signals an error. The coerce functions
dispatches on the coercion’s tag. Identity coercions return
the value unchanged. Sequence coercions apply the first
coercion and then the second coercion. Injection coercions
build a value of type Dyn. Projection coercions take a value
of type Dyn and build a new coercion from the runtime
type to the target of the projection, which it applies to the
underlying value.

obj coerce(obj v, crcn c) {

switch(TAG(c)) {

case ID_TAG: return v;

case SEQUENCE_TAG:

sequence seq = UNTAG_SEQ(c);

return coerce(coerce(v, seq->fst), seq->snd);
case PROJECT_TAG:

projection proj = UNTAG_PRJ(c);

crcn c2 = mk_crcn(TYPE(v), proj->type, proj->lbl);
return coerce(UNTAG(v), c2);

case INJECT_TAG:

injection inj = UNTAG_INJECT(c);

return INJECT(v, inj->type);
case HAS_2ND_TAG: {

switch (UNTAG_2ND(c)->second_tag) {

case REF_COERCION_TAG:

if (TAG(v) != REF_PROXY) {

return MK_REF_PROXY(v, c);

} else {

ref_proxy p = UNTAG_REF_PROXY(v);

crcn c2 = compose(p->coercion, c);

return MK_REF_PROXY(p->ref, c2); }

case FUN_COERCION_TAG:

if (TAG(v) != FUN_PROXY) {

return UNTAG_FUN(v).caster(v, c);

} else {

fun_proxy p = UNTAG_FUN_PROXY(v);

crcn c2 = compose(p->coercion, c);

return MK_FUN_PROXY(p->wrap, p->clos, c2); }

case TUPLE_COERCION_TAG:

int n = TUPLE_COERCION_SIZE(c);

obj t = MK_TUPLE(n);

for (int i = 0; i < n; i++) {

obj e = t.tup->elem[i];
crcn d = TUPLE_COERCION_ELEM(c, i);

t.tup->elem[i] = coerce(e, d); }

return t;

case REC_COERCION_TAG:

return coerce(v, REC_COERCION_BODY(c)); }}

case FAIL_TAG: raise_blame(UNTAG_FAIL(c)->lbl); }}

Figure 6. The coerce function applies a coercion to a value.

Coercing a reference type (i.e. box or vector) builds a
proxy that stores two coercions, one for reading and one
for writing, and the pointer to the underlying reference. In
case the reference has already been coerced, the old and new
coercions are composed via compose, so that there will only
ever be one proxy on a proxied reference, which ensures
space efficiency.
When coercing a function, coerce checks whether the

function has previously been coerced. If it has not been
previously coerced, then there is no proxy, and we invoke its
function pointer for casting, passing it the function and the
coercion to be applied. This “caster” function allocates and
initializes a proxy closure. If the function has been coerced,

PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA Andre Kuhlenschmidt, Deyaaeldeen Almahallawi, and Jeremy G. Siek

Grift builds a new proxy closure containing the underlying
closure, but its coercion is the result of composing the proxy’s
coercion with the coercion being applied via compose (the
code for this function is in Appendix A). The call to compose

is what maintains space efficiency.
Coercing a tuple allocates a new tuple whose elements are

the result of recurring on each of elements of the original
tuple with each of the corresponding subcoercions of the
original tuple coercion. A recursive coercion is simply a
target for specifying a recursive coercion. As such, we ignore
it and applied the body of the recursive coercion to value.
Failure coercions halt execution and report an error.

Applying Functions Because the coercion implementa-
tion distinguishes between regular closures and proxy clo-
sures, one might expect closure call sites to branch on the
type of closure being applied. However, this is not the case
because Grift ensures that the memory layout of a proxy
closure is compatible with the regular closure calling con-
vention. The only change to the calling convention of func-
tions is that we have to clear the lowest bit of the pointer to
the closure which distinguishes proxy closures from regular
closures. This representation is inspired by a technique used
in Siek and Garcia [48] which itself is inspired by Findler
and Felleisen [22].

Reading and Writing to Proxied References To handle
reads and writes on proxied references, Grift generates code
that branches on whether the reference is proxied or not
(by checking the tag bits on the pointer). If the reference is
proxied the read or write coercion from the proxy is applied
to the value read from or written to the reference. To ensure
space efficiency, there can be at most one proxy on each
reference. If the reference isn’t proxied, the operation is a
simple machine read or write.

4 Performance Evaluation
In this performance evaluation, we seek to answer a num-
ber of research questions regarding the runtime overheads
associated with gradual typing.

1. What is the time cost of achieving space efficiency
with coercions? (Section 4.2)

2. What is the overhead of gradual typing? (Sec. 4.3)
We subdivide this question into the overheads on pro-
grams that are (a) statically typed, (b) untyped, and (c)
partially typed.

Of course, to answer research question 2 definitively we
would need to consider all possible implementations of grad-
ual typing. Instead, we only answer this question for the
concrete implementation Grift.

4.1 Experimental Methodology
We use benchmarks from a number of sources: the well-
known Scheme benchmark suite (R6RS) used to evaluate

the Larceny [32] and Gambit [19] compilers, the PARSEC
benchmarks [8], the Computer Language Benchmarks Game
(CLBG), and theGradual Typing Performance Benchmarks [2].
We do not use all of the benchmarks from these suites due to
the limited number of language features currently supported
by the Grift compiler. We continue to add benchmarks as
Grift grows to support more language features. In addition
to the above benchmarks, we also include two textbook al-
gorithms: matrix multiplication and quicksort. We chose
quicksort in particular because it exhibits catastrophic over-
heads. The benchmarks that we use are:

sieve (GTP) This program finds prime numbers using the
Sieve of Eratosthenes. The program includes a library
for streams implemented using higher-order functions
and the code for sieve itself. We adapt the source for
both Typed-Racket and GTLC+ to use equirecursive
types instead of nominal types for streams.

n-body (CLBG) Models the orbits of Jovian planets, us-
ing a simple symplectic-integrator.

tak (R6RS) This benchmark, originally a Gabriel bench-
mark, is a triply recursive integer function related to
the Takeuchi function. It performs the call (tak 40
20 12). It is a test of function calls and arithmetic.

ray (R6RS) Ray tracing a scene, 20 iterations. It is a test
of floating point arithmetic adapted from Graham [24].

blackscholes (PARSEC) This benchmark, originally an
Intel RMS benchmark, calculates the prices for a port-
folio of European options analytically with the Black-
Scholes partial differential equation. There is no closed-
form expression for the Black-Scholes equation and as
such it must be computed numerically.

matmult (textbook) A triply-nested loop for matrix mul-
tiplication, with integer elements. The matrix size is
400 × 400.

quicksort (textbook) The quicksort algorithm on already-
sorted (worst-case) input, with integer arrays of size
10, 000 in the comparison to other languages and 1, 000
for the partially typed programs.

fft (R6RS) Fast Fourier Transform on 1, 048, 576 real-
valued points in the comparison to other languages
and 65, 536 for the partially typed program. A test of
floating point numbers.

Porting the Benchmarks. We ported the benchmarks to
the GTLC+, OCaml, Typed Racket, Chez Scheme, and Gam-
bit. For the R6RS and CLBG benchmarks, we added types and
converted tail recursive loops to an iterative form. For the
Blackscholes benchmark, we use the GTLC+ types which are
the closest analog to the representation used in the original
C benchmark. In some cases the choice of representation
in GTLC+ has a more specialized representation than in its
original source language, in these cases we alter the original
benchmark to make the comparison as close as possible. For
Chez Scheme and Gambit we use the safe variants of fixnum

Toward Efficient Gradual Typing PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA

Figure 7. We compare Grift with coercions to Grift with type-based casts across partially typed-programs to evaluate the cost
of space-efficiency.

and floating point specializedmath operations, but for Racket
and Typed-Racket there is only the option of safe and well-
performing floating point operators. For fixnums we are
forced to use the polymorphicmath operations. In OCaml, we
use the int and float types which correspond to unboxed 63

bit integers and boxed double precision floating point num-
bers respectively. In all languages we use internal timing so
that any differences in runtime initialization do not count
towards runtime measurements. We make no attempt to ac-
count for the difference in garbage collection between the lan-
guages. We note that Grift uses an off the shelf version of the

PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA Andre Kuhlenschmidt, Deyaaeldeen Almahallawi, and Jeremy G. Siek

Boehm-Demers-Weiser conservative garbage collector that
implements a generational mark-sweep algorithm [11, 16].
The source code for all benchmarks is available at URL: https:
//github.com/Gradual-Typing/benchmarks/tree/pldi19.

Experimental Setup. The experiments were conducted on
an unloaded machine with a 4-core Intel(R) Core(TM) i7-
4790 CPU @ 3.60GHz processor with 8192 KB of cache and
16 GB of RAM running Red Hat 4.8.5-16. The C compiler
was Clang 7.0.1, the Gambit compiler is version 4.9.3, Racket
is version 7.2, and Chez Scheme is version 9.5.3. All time
measurements use real time and we report the mean of 5
repeated measurements.

Measuring the Performance Lattice. Takikawa et al. [59]
observe that evaluating the performance of implementations
of gradually typed languages is challenging because one
needs to consider not just one version of each program,
but the many versions of a program that can be obtained
by adding/removing type annotations. For languages with
coarse-grained gradual typing, one considers all the combi-
nations of making each module typed or untyped, so there
are 2m configurations of them modules. The situation for
languages with fine-grained gradual typing, as is the case
for GTLC+, is considerably more difficult because any type
annotation, and even any node within a type annotation,
may be changed to Dyn, so there are millions of ways to add
type annotations to these benchmarks.
Greenman and Migeed [29] provide evidence that sam-

pling even a linear number of configurations (with respect
to program size) gives an accurate characterization of the
performance of the exponential configuration space. For our
experiments on partially typed programs, we follow the same
approach and show the results for a linear number of ran-
domly sampled configurations for each benchmark. We have
data for many more configurations, but it does not provide
new information and makes the scatter plots more difficult
to read.

Our sampling algorithm takes as inputs a statically-typed
program, the number of samples, and the number of bins
to be uniformly sampled. It creates a list of associations be-
tween source locations and type annotations, and shuffles
the list to ensure randomness. The algorithm then proceeds
to pick new gradual versions of each static type, but con-
strains the overall program’s type precision to fall within a
desired bin. These newly generated gradual types are then
use to generate a gradual version of the original program by
inserting the gradual types at the source locations where the
static types where originally found. The algorithm iterates
selecting an equal number of samples for each bin until the
desired number of samples have been generated.

4.2 The Runtime Cost of Space Efficiency
In Figure 7 we compare the performance of Grift with type-
based casts to Grift with coercions, to measure the runtime
cost (or savings) of using coercions to obtain space efficiency.
We compare these two approaches on partially typed config-
urations of the benchmarks. We chose the quicksort, n-body,
blackscholes, and fft benchmarks as representative examples
of the range in performance. The results for the rest of the
benchmarks are in Appendix C.

In Figure 7, for each benchmark there are three plots that
share the same x-axis, which varies the amount of type an-
notations in the program, from 0% on the left to 100% on the
right. In the first plot, the y-axis is the absolute runtime in
seconds. In the second, it is the number of runtime casts that
were executed, and in the third plot, the y-axis it is the length
of the longest chain of proxies that was accessed at runtime,
like the plots regarding even/odd and quicksort in Figure 4.
The line marked Dynamic Grift indicates the performance of
Grift (using coercions) on untyped code. That is, on code in
which every type annotation is Dyn and every constructed
value (e.g. integer constant) is explicitly cast to Dyn. The
line marked Static Grift is the performance of the Static Grift
compiler on fully typed code. Static Grift is a variant of Grift
that is statically typed, with no support for (or overhead
from) gradual typing (see Section 4.3).
The sieve benchmark elicits very long chains of proxies

on some configurations, which in turn causes catastrophic
overhead for type-based casts. Indeed, the plot concerning
the longest proxy chains for sieve in Figure 7, shows that the
configurations with catastrophic performance are the ones
that accumulate proxy chains of length greater than 2000.
Likewise, Takikawa et al. [59] reported overheads of over
100× on sieve for Typed Racket. In contrast, the coercion-
based approach successfully eliminates these catastrophic
slowdowns in sieve. The scale of the figure makes it hard to
judge their performance in detail as the runtimes are so low
relative to the type-based casts. Coercions are 0.32× to 87×
faster than type-based casts on sieve.

The n-body benchmark is interesting in that it elicits only
mild space efficiency problems, with proxy chains up to
length 9, and this corresponds to a mild increase in perfor-
mance of coercions relative to type-based casts. Coercions
are 0.38× to 39× faster than type-based casts on n-body.

In benchmarks that do not elicit space efficiency problems,
we see a general trend that coercions are roughly equal in
performance to type-based casts.

Answer to research question (1): On bench-
marks that do not induce long proxy chains,
we sometimes see a mild speedup and some-
times a mild slowdown for coercions compared
to type-based casts. However, on benchmarks
with long proxy chains, coercions eliminate the
catastrophic overheads.

https://github.com/Gradual-Typing/benchmarks/tree/pldi19
https://github.com/Gradual-Typing/benchmarks/tree/pldi19

Toward Efficient Gradual Typing PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA

Figure 8. The cumulative performance of Grift and Typed Racket on partially typed configurations. The x-axis represents the
slowdowns with respect to Racket. The y-axis is the total number of configurations. The plots on the left are for coarse-grained
configurations whereas the plots on the right are for fine-grained configurations (so it is a different view on the same data as
in Figure 7). These results show that coercions eliminate the catastrophic overheads (quicksort, sieve) of type-based casts and
that Grift has less incidental overhead than Typed Racket (sieve, ray, n-body).

PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA Andre Kuhlenschmidt, Deyaaeldeen Almahallawi, and Jeremy G. Siek

4.3 Gradual Typing Overhead and Comparison
The purpose of this section is to answer research question 2,
i.e., what is the overhead of gradual typing? We want to un-
derstand which overheads are inherent (an necessary part of
sound gradual typing) as opposed to incidental (unnecessary
overheads that could be removed). We identify incidental
overheads by comparing Grift to other implementations, and
reason about what these comparisons say about gradual ty-
ing as a whole, and our implementations of Gradual Typing.
In Section 4.3.1 we compare Grift to statically typed pro-

gramming languages. To isolate the overheads associated
with gradual typing from the rest of our implementation,
we add a variant of the Grift compiler, named Static Grift,
that requires the input program to be statically typed and
does not generate any code in support of gradual typing.
Comparing Grift to Static Grift allows us to see that grad-
ual typing introduces some overhead (though it doesn’t tell
us if it is inherent to gradual typing), and comparing Static
Grift to OCaml and Typed Racket shows that Static Grift has
reasonable performance for a statically typed language.
In Section 4.3.2 we examine overheads of gradual typ-

ing on dynamically typed code. We compare against Racket,
Gambit, and Chez Scheme and find that while Grift is in the
ball park of dynamically typed programming languages, it ex-
periences some incidental overheads. We know this because
Typed Racket avoids similar overheads, in their dynamically
typed implementation. This is as expected because Grift does
not implement the many general purpose optimizations that
are in these other systems.
In Section 4.3.3 we inspect the overheads of gradual typ-

ing on partially typed code. Grift shows that space-efficient
coercions avoid the catastrophic overheads associated with
gradual typing. This demonstrates that these catastrophic
overheads are incidental to gradual typing. On the other
hand, we conjecture that constant-factor overheads asso-
ciated with composing coercions is inherent for gradually
typed programming languages with structural types. How-
ever, we also think there is still some remaining constant-
factor overhead that is incidental and could be eliminated.

4.3.1 Evaluation on Statically Typed Programs
Figure 9a shows the results of evaluating the speedup of Grift
with respect to Static Grift on statically typed versions of
the benchmarks. The performance of Grift sometimes dips
to 0.49× that of Static Grift. To put the performance of Grift
in context, it is comparable to OCaml and better than fully
static Typed Racket.

Answer to research question (2 a): the per-
formance of Grift on statically typed code is of-
ten reasonable and is on par with OCaml but
can dip to 0.49× with respect to Static Grift on
array-intensive benchmarks.

(a) Statically Typed Programs

(b) Untyped Programs

Figure 9. A comparison of the speedup on typed and un-
typed programs of Grift. For typed programs, we measure
speedup wrt. Static Grift and compare Grift with OCaml and
Typed Racket. Grift shows some overhead compared to Static
Grift but is on par with OCaml and significantly faster than
Typed Racket. For untyped programs, we measure speedup
wrt. Racket and compare to Gambit and Chez Scheme. Grift’s
performance is roughly half that of Racket, Gambit, and Chez
Scheme’s.

We believe that most of the differences between Grift
and Static Grift can be attributed to the checks for proxies
in operations on mutable arrays. We conjecture that this
performance overhead is inherent to the standard semantics
for gradual typing.

4.3.2 Evaluation on Untyped Programs
Figure 9b shows the results of evaluating the speedup of
Grift with respect to Racket on untyped configurations of
the benchmarks. The figure also includes results for Gambit

Toward Efficient Gradual Typing PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA

and Chez Scheme. We see that the performance of Grift is
generally lower than Racket, Gambit, and Chez Scheme on
these benchmarks, which is unsurprising because Grift does
not perform any general-purpose optimizations. This experi-
ment does not tease apart which of these performance differ-
ences are due to gradual typing per se and which of them are
due to orthogonal differences in implementation, e.g., ahead-
of-time versus JIT compilation, quality of general-purpose
optimizations, etc. Thus we can draw only the following
conservative conclusion.

Answer to research question (2 b) the over-
head of Grift on untyped code is currently rea-
sonable but there are still some constant-factor
improvements to be made.

4.3.3 Evaluation on Partially Typed Programs
To answer research question (2 c), i.e., “what is the overhead
of gradual typing for partially typed code?”, we consider
the results in Figure 8. The left-hand column shows the
performance of Grift (with coercions and type-based) and
for Typed Racket on coarse-grained configurations, in which
each module is either typed or untyped. The right-hand
column shows the performance results for Grift on fine-
grained configurations.
The cumulative performance plots shown in Figure 8 in-

dicate how many partially typed configurations perform
within a certain performance range. The x-axis is log-scale
slowdown with respect to Racket and the y-axis is the to-
tal number of configurations. For instance, to determine
how many configurations perform within a 2× slowdown of
Racket, read the y-axis where the corresponding line crosses
2 on the x-axis. Lines that climb steeply as they go to the right
exhibit good performance on most configurations whereas
lines that climb slowly signal poorer performance.

The first observation, based on the right-hand side of Fig-
ure 8, that we take away is that coercions reduce overheads in
the benchmarks that cause long chains of proxies (quicksort,
sieve, and n-body). This can be seen in the way the green
line for coercions is to the left, sometimes far to the left,
of the purple line for type-based casts. This demonstrates
that catastrophic overheads are incidental (just a property of
type-based casts and related technologies), and not inherent
to gradual typing per se.
The second observation, based on the left-hand side of

Figure 8, is that Typed Racket, with its contract-based run-
time checks, and even with collapsible contracts[20], incurs
significant incidental overheads. The yellow line for Typed
Racket is far to the right of Grift on sieve, ray, and n-body.We
hope that these benchmarks and results will help the devel-
opers of Typed Racket identify and eliminate these incidental
overheads.

Third, it is interesting to compare the left-hand column to
the right-hand column. Many researchers have speculated
regarding whether fine-grained or coarse-grained gradual

typing elicit more runtime overhead. The data suggests that
there is not a simple answer to this question. From a syn-
tactic point of view, it is certainly true that coarse-grained
yields fewer opportunities for casts to be inserted. How-
ever, sometimes a single cast can have a huge impact on
runtime, especially if it appears in a hot code region or if it
wraps a proxy around a value that is used later in a hot code
region. For example, in the sieve, ray, and n-body bench-
marks, we see considerable overheads for Typed Racket on
many coarse-grained configurations. On the other hand, fine-
grained gradual typing provides many more opportunities
for configurations to elicit more runtime overhead. For ex-
ample, compare the left and right-hand sides for quicksort
and sieve, in which there are catastrophic slowdowns for
type-based casts in the fine-grained configurations but not
in the coarse-grained configurations.

Answer to research question (2 c): the over-
head of Grift on partially typed code is no longer
catastrophic, but there is still room for improve-
ment.

4.4 Threats to Validity
One concern with these experiments is that the GTLC+ is a
small language compared to other programming languages.
For example, both Typed Racket and OCaml support sep-
arate compilation, tail-call optimization, unions, and poly-
morphism.The Grift compiler supports none of these. This is
likely one of the reasons that Static Grift has performance on
par with OCaml. Extending Grift to support these features
will likely introduce overheads. The question relevant to this
paper is whether there will be any additional overheads that
arise from the interactions between gradual typing and the
new features. For example, adding polymorphism with rela-
tional parametricity would require runtime sealing, which
could incur significant overhead.
Another concern with being a small language is that the

language features available in GTLC+ limit benchmarks that
we are able to support. This has led to a numerically leaning
suite of benchmarks. Of the 8 benchmarks presented in this
paper, 6 feature a significant amount of arithmetic. There
is a possibility that Grift performs really well on arithmetic
benchmarks, but not as well on other types of benchmarks.

5 Future Work
Grift is still in it’s infancy and more features are planned,
such as modules, nominal records, type unions, and polymor-
phism. These features will bring the GTLC+ much closer to
being a realistic programming language and will enable the
evaluation of more benchmarks. Furthermore, there is plenty
of room to improve performance and we identify three areas
where we think improvements can be attained.

First, operations on references and arrays always check
whether the address is proxied even in typed code regions,

PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA Andre Kuhlenschmidt, Deyaaeldeen Almahallawi, and Jeremy G. Siek

which causes slowdowns in array intensive benchmarks.
Monotonic reference [56] is an alternative approach that
does not introduce such overheads. An implementation of
this idea is currently being added to Grift and preliminary
results show that it eliminates the overheads in statically-
typed, array-intensive benchmarks.

Second, we believe that changing the in-memory represen-
tation of coercions could improve performance. The repre-
sentation currently follows the grammar for coercions (Sec-
tion 2), but if we instead followed the grammar for coercions
in normal form, it would reduce the amount of space needed
(by a constant factor) and there would be fewer memory
indirections when composing coercions.
Finally, as mentioned above, Grift currently does not im-

plement general-purpose optimizations common in main-
stream compilers. It is yet to be shown if optimizations such
as tail-call optimization, type inference, inlining, constant
propagation, constant folding, and common subexpression
elimination can improve the performance across the partially
and/or dynamically typed configurations. We conjecture that
such optimizations will eliminate many first-order checks,
the main cause of slowdowns in dynamically typed code.

6 Conclusion
We have presented Grift, a compiler for exploring imple-
mentations of gradually typed languages. In particular, we
implement and evaluate an important idea for efficient grad-
ual typing: Henglein’s coercions. Our experiments show that
the performance of Grift on statically typed code is compara-
ble to that of OCaml. For untyped code, Grift is slower than
but in the same ballpark as Scheme implementations.

On partially typed code, our experiments show that space-
efficient coercions eliminate the catastrophic slowdowns (i.e.,
changes to the time complexity) caused by sequences of casts
without adding significant average-case overhead. We see
significant speedups (10×) as 60% or more of a program is an-
notated with types. Our experiments show that the overhead
in partially typed configurations with Grift is much lower
than that with Typed Racket. According to the main author
of Typed Racket, Typed Racket’s design decisions are made
in the context of a preexisting dynamically typed program-
ming language, and therefore the current implementation
introduces overhead to gradual typing that can be avoided
in other systems [60].

The experiments reported here suggest a few conclusions.
First, an implementation of a gradually typed programming
language can deliver good performance on statically typed
code. Second, catastrophic slowdowns are not an essential
cost of gradual typing. Finally, some of the constant factors
that are attributed to gradual typing are incidental to the
current implementations of Gradual Typing. Furthermore,
we believe that there is still incidental overhead in Grift that
can be eliminated.

Acknowledgments
We would like to thank our shepherd Michael Greenberg,
Sam Tobin-Hochstadt, Andrew Kent, and anonymous re-
viewers for their comments and suggestions. We also thank
Frédéric Bour for his suggestions on improving our OCaml
benchmarks. This material is based upon work supported by
the National Science Foundation under Grant No. 1763922.

References
[1] 2017. https://flow.org/en/
[2] 2018. Gradual Typing Performance Benchmarks. https://pkgs.

racket-lang.org/package/gtp-benchmarks
[3] Amal Ahmed, Robert Bruce Findler, Jeremy G. Siek, and Philip Wadler.

2011. Blame for All. In Symposium on Principles of Programming
Languages.

[4] Amal Ahmed, Dustin Jamner, Jeremy G. Siek, and Philip Wadler. 2017.
Theorems for Free for Free: Parametricity, With and Without Types.
In International Conference on Functional Programming (ICFP).

[5] Christopher Anderson and Sophia Drossopoulou. 2003. BabyJ - From
Object Based to Class Based Programming via Types. In WOOD ’03,
Vol. 82. Elsevier.

[6] Andrew W. Appel. 1992. Compiling with continuations. Cambridge
University Press, New York, NY, USA.

[7] Spenser Bauman, Carl Friedrich Bolz-Tereick, Jeremy Siek, and Sam
Tobin-Hochstadt. 2017. Sound Gradual Typing: Only Mostly Dead.
Proc. ACM Program. Lang. 1, OOPSLA, Article 54 (Oct. 2017), 24 pages.
https://doi.org/10.1145/3133878

[8] Christian Bienia, Sanjeev Kumar, Jaswinder Pal Singh, and Kai Li.
2008. The PARSEC Benchmark Suite: Characterization and Architectural
Implications. Technical Report TR-811-08. Princeton University.

[9] Gavin Bierman, Martín Abadi, and Mads Torgersen. 2014. Under-
standing TypeScript. In ECOOP 2014 – Object-Oriented Programming,
Richard Jones (Ed.). Lecture Notes in Computer Science, Vol. 8586.
Springer Berlin Heidelberg, 257–281.

[10] Bard Bloom, John Field, Nathaniel Nystrom, Johan Östlund, Gregor
Richards, Rok Strniša, Jan Vitek, and Tobias Wrigstad. 2009. Thorn:
Robust, Concurrent, Extensible Scripting on the JVM. InACM SIGPLAN
Conference on Object Oriented Programming Systems Languages and
Applications. 117–136.

[11] Hans-Juergen Boehm and Mark Weiser. 1988. Garbage Collection in
an Uncooperative Environment. Softw. Pract. Exper. 18, 9 (Sept. 1988),
807–820. https://doi.org/10.1002/spe.4380180902

[12] Luca Cardelli. 1983. The Functional Abstract Machine. Technical Report
TR-107. AT&T Bell Laboratories.

[13] Luca Cardelli. 1984. Compiling a Functional Language. In ACM Sym-
posium on LISP and Functional Programming (LFP ’84). ACM, 208–217.

[14] Giuseppe Castagna and Victor Lanvin. 2017. Gradual Typing with
Union and Intersection Types. In International Conference on Functional
Programming.

[15] Olaf Chitil. 2012. Practical Typed Lazy Contracts. In Proceedings of the
17th ACM SIGPLAN International Conference on Functional Program-
ming (ICFP ’12). ACM, New York, NY, USA, 67–76.

[16] Alan Demers, MarkWeiser, Barry Hayes, Hans Boehm, Daniel Bobrow,
and Scott Shenker. 1990. Combining Generational and Conservative
Garbage Collection: Framework and Implementations. In Proceedings
of the 17th ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages (POPL ’90). ACM, New York, NY, USA, 261–269.
https://doi.org/10.1145/96709.96735

[17] Christos Dimoulas, Robert Bruce Findler, Cormac Flanagan, and
Matthias Felleisen. 2011. Correct blame for contracts: no more scape-
goating. In Proceedings of the 38th annual ACM SIGPLAN-SIGACT
symposium on Principles of programming languages (POPL ’11). ACM,

https://flow.org/en/
https://pkgs.racket-lang.org/package/gtp-benchmarks
https://pkgs.racket-lang.org/package/gtp-benchmarks
https://doi.org/10.1145/3133878
https://doi.org/10.1002/spe.4380180902
https://doi.org/10.1145/96709.96735

Toward Efficient Gradual Typing PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA

New York, NY, USA, 215–226.
[18] Christos Dimoulas, Sam Tobin-Hochstadt, andMatthias Felleisen. 2012.

Complete Monitors for Behavioral Contracts. In ESOP.
[19] Marc Feeley. 2014. Gambit-C: A portable implementation of Scheme.

Technical Report v4.7.2. Universite de Montreal.
[20] Daniel Feltey, Ben Greenman, Christophe Scholliers, Robert Bruce

Findler, and Vincent St-Amour. 2018. Collapsible Contracts: Fixing a
Pathology of Gradual Typing. Proc. ACM Program. Lang. 2, OOPSLA,
Article 133 (Oct. 2018), 27 pages. https://doi.org/10.1145/3276503

[21] R. B. Findler and M. Felleisen. 2002. Contracts for higher-order func-
tions. In International Conference on Functional Programming (ICFP).
48–59.

[22] Robert Bruce Findler andMatthias Felleisen. 2002. Contracts for Higher-
Order Functions. Technical Report NU-CCS-02-05. Northeastern Uni-
versity.

[23] Ronald Garcia and Matteo Cimini. 2015. Principal Type Schemes for
Gradual Programs. In Proceedings of the 42nd Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages (POPL
’15). ACM, 303–315.

[24] P. Graham. 1995. ANSI Common Lisp. Prentice Hall.
[25] Kathryn E. Gray, Robert Bruce Findler, and Matthew Flatt. 2005. Fine-

grained interoperability through mirrors and contracts. In OOPSLA
’05: Proceedings of the 20th annual ACM SIGPLAN conference on Object
oriented programming systems languages and applications. ACM Press,
New York, NY, USA, 231–245.

[26] Michael Greenberg. 2014. Space-Efficient Manifest Contracts. CoRR
abs/1410.2813 (2014). http://arxiv.org/abs/1410.2813

[27] Michael Greenberg. 2015. Space-Efficient Manifest Contracts. In Pro-
ceedings of the 42Nd Annual ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages (POPL ’15). ACM, New York, NY,
USA, 181–194. https://doi.org/10.1145/2676726.2676967

[28] Michael Greenberg, Benjamin C. Pierce, and Stephanie Weirich. 2010.
Contracts Made Manifest. In Principles of Programming Languages
(POPL) 2010.

[29] Ben Greenman and Zeina Migeed. 2018. On the Cost of Type-tag
Soundness. In Proceedings of the ACM SIGPLAN Workshop on Partial
Evaluation and Program Manipulation (PEPM ’18). ACM, New York,
NY, USA, 30–39. https://doi.org/10.1145/3162066

[30] Jessica Gronski, Kenneth Knowles, Aaron Tomb, Stephen N. Freund,
and Cormac Flanagan. 2006. Sage: Hybrid Checking for Flexible Spec-
ifications. In Scheme and Functional Programming Workshop. 93–104.

[31] Arjun Guha, Jacob Matthews, Robert Bruce Findler, and Shriram Kr-
ishnamurthi. 2007. Relationally-Parametric Polymorphic Contracts.
In Dynamic Languages Symposium.

[32] Lars T. Hansen and William D. Clinger. 2002. An Experimental Study
of Renewal-older-first Garbage Collection. In Proceedings of the Seventh
ACM SIGPLAN International Conference on Functional Programming
(ICFP ’02). ACM, New York, NY, USA, 247–258. https://doi.org/10.
1145/581478.581502

[33] Anders Hejlsberg. 2012. Introducing TypeScript. Microsoft Channel 9
Blog.

[34] Fritz Henglein. 1994. Dynamic typing: syntax and proof theory. Science
of Computer Programming 22, 3 (June 1994), 197–230.

[35] David Herman, Aaron Tomb, and Cormac Flanagan. 2007. Space-
Efficient Gradual Typing. In Trends in Functional Prog. (TFP). XXVIII.

[36] David Herman, Aaron Tomb, and Cormac Flanagan. 2010. Space-
efficient gradual typing. Higher-Order and Symbolic Computation 23, 2
(2010), 167–189.

[37] Yuu Igarashi, Taro Sekiyama, and Atsushi Igarashi. 2017. On Poly-
morphic Gradual Typing. In International Conference on Functional
Programming (ICFP). ACM.

[38] Lintaro Ina and Atsushi Igarashi. 2011. Gradual typing for generics. In
Proceedings of the 2011 ACM international conference on Object oriented
programming systems languages and applications (OOPSLA ’11).

[39] Andrew W. Keep, Alex Hearn, and R. Kent Dybvig. 2012. Optimizing
Closures in O(0)-time. In Proceedings of the 2012 Workshop on Scheme
and Functional Programming (Scheme ’12).

[40] Jacob Matthews and Amal Ahmed. 2008. Parametric Polymorphism
Through Run-Time Sealing, or, Theorems for Low, Low Prices!. In Pro-
ceedings of the 17th European Symposium on Programming (ESOP’08).

[41] JacobMatthews and Robert Bruce Findler. 2007. Operational Semantics
for Multi-Language Programs. In The 34th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages.

[42] Fabian Muehlboeck and Ross Tate. 2017. Sound Gradual Typing is
Nominally Alive and Well. Proc. ACM Program. Lang. 1, OOPSLA,
Article 56 (Oct. 2017), 30 pages. https://doi.org/10.1145/3133880

[43] Aseem Rastogi, Nikhil Swamy, Cédric Fournet, Gavin Bierman, and
Panagiotis Vekris. 2015. Safe & Efficient Gradual Typing for TypeScript.
In Proceedings of the 42Nd Annual ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages (POPL ’15). ACM, New York,
NY, USA, 167–180. https://doi.org/10.1145/2676726.2676971

[44] Gregor Richards, Ellen Arteca, and Alexi Turcotte. 2017. The VM
Already Knew That: Leveraging Compile-time Knowledge to Optimize
Gradual Typing. Proc. ACM Program. Lang. 1, OOPSLA, Article 55 (Oct.
2017), 27 pages. https://doi.org/10.1145/3133879

[45] Gregor Richards, Francesco Zappa Nardelli, and Jan Vitek. 2015. Con-
crete Types for TypeScript. In European Conference on Object-Oriented
Programming (ECOOP).

[46] Taro Sekiyama, Soichiro Ueda, and Atsushi Igarashi. 2015. Shifting the
Blame - A Blame Calculus with Delimited Control. In Programming
Languages and Systems - 13th Asian Symposium, APLAS 2015, Pohang,
South Korea, November 30 - December 2, 2015, Proceedings. 189–207.
https://doi.org/10.1007/978-3-319-26529-2_11

[47] Jeremy G. Siek. 2008. Space-Efficient Blame Tracking for Gradual
Types. (April 2008).

[48] Jeremy G. Siek and Ronald Garcia. 2012. Interpretations of the
Gradually-Typed Lambda Calculus. In Scheme and Functional Program-
ming Workshop.

[49] Jeremy G. Siek, Ronald Garcia, and Walid Taha. 2009. Exploring the
Design Space of Higher-Order Casts. In European Symposium on Pro-
gramming (ESOP). 17–31.

[50] Jeremy G. Siek and Walid Taha. 2006. Gradual typing for functional
languages. In Scheme and Functional Programming Workshop. 81–92.

[51] JeremyG. Siek andWalid Taha. 2007. Gradual Typing for Objects. In Eu-
ropean Conference on Object-Oriented Programming (LCNS), Vol. 4609.
2–27.

[52] Jeremy G. Siek, Peter Thiemann, and Philip Wadler. 2015. Blame and
coercion: Together again for the first time. In Conference on Program-
ming Language Design and Implementation (PLDI).

[53] Jeremy G. Siek and Sam Tobin-Hochstadt. 2016. The Recursive Union
of Some Gradual Types. In Wadler Fest (LNCS), Sam Lindley, Conor
McBride, Don Sannella, and Phil Trinder (Eds.). Springer.

[54] Jeremy G. Siek and Manish Vachharajani. 2008. Gradual Typing and
Unification-based Inference. In DLS.

[55] Jeremy G. Siek, Michael M. Vitousek, Matteo Cimini, and John Tang
Boyland. 2015. Refined Criteria for Gradual Typing. In SNAPL: Summit
on Advances in Programming Languages (LIPIcs: Leibniz International
Proceedings in Informatics).

[56] Jeremy G. Siek, Michael M. Vitousek, Matteo Cimini, Sam Tobin-
Hochstadt, and Ronald Garcia. 2015. Monotonic References for Ef-
ficient Gradual Typing. In European Symposium on Programming
(ESOP).

[57] T. Stephen Strickland, Sam Tobin-Hochstadt, Robert Bruce Findler,
and Matthew Flatt. 2012. Chaperones and impersonators: run-time
support for reasonable interposition. In Conference on Object Oriented
Programming Systems Languages and Applications (OOPSLA ’12).

[58] Nikhil Swamy, Cedric Fournet, Aseem Rastogi, Karthikeyan Bharga-
van, Juan Chen, Pierre-Yves Strub, and Gavin Bierman. 2014. Gradual

https://doi.org/10.1145/3276503
http://arxiv.org/abs/1410.2813
https://doi.org/10.1145/2676726.2676967
https://doi.org/10.1145/3162066
https://doi.org/10.1145/581478.581502
https://doi.org/10.1145/581478.581502
https://doi.org/10.1145/3133880
https://doi.org/10.1145/2676726.2676971
https://doi.org/10.1145/3133879
https://doi.org/10.1007/978-3-319-26529-2_11

PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA Andre Kuhlenschmidt, Deyaaeldeen Almahallawi, and Jeremy G. Siek

Typing Embedded Securely in JavaScript. In ACM Conference on Prin-
ciples of Programming Languages (POPL).

[59] Asumu Takikawa, Daniel Feltey, Ben Greenman, Max New, Jan Vitek,
and Matthias Felleisen. 2016. Is Sound Gradual Typing Dead?. In
Principles of Programming Languages (POPL). ACM.

[60] Sam Tobin-Hochstadt. 2019. Personal communication.
[61] Sam Tobin-Hochstadt and Matthias Felleisen. 2006. Interlanguage Mi-

gration: From Scripts to Programs. In Dynamic Languages Symposium.
[62] Sam Tobin-Hochstadt and Matthias Felleisen. 2008. The Design and

Implementation of Typed Scheme. In Symposium on Principles of Pro-
gramming Languages.

[63] Julien Verlaguet and Alok Menghrajani. [n. d.]. Hack: a new pro-
gramming langauge for HHVM. https://code.facebook.com/posts/
264544830379293/hack-a-new-programming-language-for-hhvm/

[64] Michael Vitousek, Cameron Swords, and Jeremy G. Siek. 2017. Big
Types in Little Runtime. In Symposium on Principles of Programming
Languages (POPL).

[65] Michael M. Vitousek, Jeremy G. Siek, Andrew Kent, and Jim Baker.
2014. Design and Evaluation of Gradual Typing for Python. InDynamic
Languages Symposium.

[66] Philip Wadler and Robert Bruce Findler. 2009. Well-typed programs
can’t be blamed. In European Symposium on Programming (ESOP).
1–16.

https://code.facebook.com/posts/264544830379293/hack-a-new-programming-language-for-hhvm/
https://code.facebook.com/posts/264544830379293/hack-a-new-programming-language-for-hhvm/

Toward Efficient Gradual Typing PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA

A Values, Macros, and Compose
Figures 10, 11, 12, and 13 lists the C structs use to represent
values and macros used in the code examples to manipulate
them. Figure 15 shows the code for the compose runtime func-
tion which follows the equations for coercion composition
given in the next section, in Figure 17. It is worth mentioning
that Figure 15 shows how the compiler handles recursive
coercions while Figures 17 and 18 do not include their se-
mantics. We plan to formalize the semantics in future work.
Figure 14 gives the interface for an associative map/stack

used in compose to recognize when we have already com-
posed a recursive coercion that could be used for a particular
pair of coercions.

#define TAG(value) (((int64_t)value)&0b111)

#define UNTAG_INT(value) (((int64_t)value)&~0b111)

#define TAG_INT(value, tag) (((int64_t)value)|tag)

#define UNTAG_REF(ref) ((obj*)UNTAG_INT(ref))

Figure 10. All allocated values have 3 bits that can be used
for tagging.

PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA Andre Kuhlenschmidt, Deyaaeldeen Almahallawi, and Jeremy G. Siek

typedef char* blame;

#define ID NULL

typedef struct {type type; blame info;} project_crcn;

typedef struct {type type} inject_crcn;

typedef struct {crcn fst; crcn snd} seq_crcn;

typedef struct {blame info} fail_crcn;

#define UNTAG_2ND(c) \

((struct {snd_tag second_tag;}*)UNTAG_INT(c))

typedef struct {

snd_tag second_tag;

int32_t arity; crcn ret;

crcn args[] } fun_crcn;

typedef struct {

snd_tag second_tag;

crcn write; crcn read} ref_crcn;

typedef struct {

snd_tag second_tag;

int64_t size; crcn elems[] } tup_crcn;

typedef int64_t snd_tag;

typedef struct {

snd_tag second_tag;

crcn body[] } rec_crcn;

typedef union {

project_crcn* prj;

inject_crcn* inj;

seq_crcn* seq;

fail_crcn* fail;

fun_crcn* fun;

ref_crcn* ref;

tup_crcn* tup;

rec_crcn* rec} crcn;

// UNTAG_PRJ, UNTAG_FAIL, UNTAG_SEQ are similar to UNTAG_INJ

#define UNTAG_INJ(inj) ((inject_crcn)UNTAG_INT(inj))

// MK_SEQ, MK_PROJECTION, MK_INJECTION are similar

#define MK_REF_COERCION(r, w) \

(tmp_rc = (ref_crcn*)GC_MALLOC(RC_SIZE),\

tmp_rc->second_tag=REF_COERCION_TAG, \

tmp_rc->read=r, tmp_rc->write=w,\
(crcn)(TAG_INT(tmp_rc, HAS_2ND_TAG)))

Figure 12. Coercions are represented as directed graphs.
The only back edges are recursive coercion nodes
(rec_coercion). We maintain a normal form akin to the
normal form shown in Figure 17 that isn’t enforced by these
types. Furthermore, wemaintain the invariant that rec_crcn
are only allocated if referenced by a subcoercion.

typedef struct {

void* code;

(obj)(*caster)(obj, type, type, blame);

obj fvs[]; } closure;

typedef struct{obj elems[]} tuple;

#define MK_TUPLE(n) ((tuple*)GC_MALLOC(sizeof(obj) * n))

typedef struct{obj elem} box;

typedef struct{int64_t length; obj elems[]} vector;

#ifdef TYPE_BASED_CASTS

typedef struct {

obj* ref;

type source;

type target;

blame info;} ref_proxy;

#define MK_REF_PROXY(v, s, t, l) \

(tmp_rp = (ref_proxy*)GC_MALLOC(RP_SIZE),\

tmp_rp->value=v, tmp_rp->source=s,\
tmp_rp->target=t, tmp_rp->info=l,\
(obj)TAG_INT(tmp_rp, REF_PROXY_TAG)

#define UNTAG_FUN(fun) ((closure*)(fun)))

#elseif COERCIONS

#define UNTAG_FUN(fun) ((closure*)UNTAG_INT(fun))

typedef struct {obj* ref; crcn cast;} ref_proxy

#define MK_REF_PROXY(v, c) \

(tmp_rp = (ref_proxy*)GC_MALLOC(RP_SIZE),\

tmp_rp->value=v, tmp_rp->coerce=c,\
(obj)TAG_INT(tmp_rp, REF_PROXY_TAG)

#endif

typedef struct {obj value; type source} nonatomic_dyn;

#define UNTAG_NONATOMIC(value) \

((nonatomic_dyn)UNTAG_INT(value))

typedef union {

int64_t atomic;

nonatomic_dyn* boxed} dynamic;

#define UNTAG(v) \

((TAG(v) == INT_TAG) ? (obj)(UNTAG_INT(v)>>3) : \

(TAG(v) == UNIT_TAG) ? (obj)UNIT_CONSTANT : \

... (obj)UNTAG_NONATOMIC(v).value)

#define TYPE(v) \

((TAG(v) == INT_TAG) ? (type)INT_TYPE : \

(TAG(v) == UNIT_TAG) ? (type)UNIT_TYPE :\

... UNTAG_NONATOMIC(v)->source)
#define INJECT(v, s) \

((s==INT_TYPE) ? TAG_INT(v<<3, INT_TAG) :\

(s==UNIT_TYPE) ? DYN_UNIT_CONSTANT : ... \

... (tmp_na = (nonatomic_dyn*)GC_MALLOC(NA_DYN_SIZE),\

tmp_na->value=value, tmp_na->source=s, (obj)tmp_na)

typedef union {

int64_t fixnum; double flonum; dynamic dyn;

closure* clos; tuple* tuple;

box* box; vector* vec} obj;

Figure 13. Value Representation

Toward Efficient Gradual Typing PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA

typedef struct {

crcn fst;

crcn snd;

crcn mapsto } assoc_triple;

typedef struct {

unsigned int size;

unsigned int next;

assoc_triple *triples;} assoc_stack;

// Push a new triple on the assoc_stack

void

assoc_stack_push(assoc_stack *m, crcn f, crcn s, crcn t);

// return index of association of f and s

// returns -1 if the association isn't found

int grift_assoc_stack_find(assoc_stack *m, obj f, obj s);

// pop the most recent triple, return the mapsto value

obj

grift_assoc_stack_pop(assoc_stack *m);

// return the mapsto of the ith association

obj

grift_assoc_stack_ref(assoc_stack *m, int i);

// update the mapsto of the ith association

void

grift_assoc_stack_set(assoc_stack *m, int i, obj v);

Figure 14.The association stack is used compose to compose
recursive equations at runtime. It associates two pointers as
a key to another pointer.

#define TYPE_DYN_RT_VALUE 7

#define TYPE_INT_RT_VALUE 15

#define TYPE_BOOL_RT_VALUE 23

#define TYPE_UNIT_RT_VALUE 31

#define TYPE_FLOAT_RT_VALUE 39

#define TYPE_CHAR_RT_VALUE 47

typedef struct {int64_t index; int64_t hash } type_summary;

typedef struct {type_summary summary; type* body} ref_type;

typedef struct {type_summary summary;

int64_t arity; type ret; type args[]} fun_type;

typedef struct {type_summary summary;

int64_t size; type elems[]} tup_type;

typedef struct {type_summary summary;

type* body} rec_type;

typedef union {

int64_t atm;

ref_type* ref; fun_type* fun;

tup_type* tup; rec_type* rec} type;

Figure 11. Runtime types are either 64 bit integers or a
pointer to a heap allocated type. Heap allocated types are
hoisted and shared at runtime so that structural equality
is equivalent to pointer equality. The lowest 3 bits of each
type are used to distinguish between heap allocated types
and atomic types. The summary field of heap allocated types
is used in implementation hashconsing at runtime for the
monotonic references implementation.

PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA Andre Kuhlenschmidt, Deyaaeldeen Almahallawi, and Jeremy G. Siek

assoc_stack *as;

crcn compose(crcn fst, crcn snd, bool* id_eqv, int* fvs) {

if (fst == ID) {if (snd == ID) return ID; else { *id_eqv = false; return snd; }}

else if (snd == ID) { return fst; }

else if (TAG(fst) == SEQUENCE_TAG) {

sequence s1 = UNTAG_SEQ(fst);

if (TAG(s1->fst) == PROJECT_TAG) {

*id_eqv = false; return MK_SEQ(s1->fst, compose(s1->snd, snd, id_eqv, fvs)); }

else if (TAG(snd) == FAIL_TAG) { *id_eqv = false; return snd; }

else { sequence s2 = UNTAG_SEQ(snd);

type src = UNTAG_INJ(s1->snd)->type; type tgt = UNTAG_PRJ(s2->fst)->type;
blame lbl = UNTAG_PRJ(s2->fst)->lbl; crcn c = mk_crcn(src, tgt, lbl);

bool unused = true;

return compose(compose(seq->fst, c, &unused, fvs), s2->snd, id_eqv, fvs); }

} else if (TAG(snd) == SEQUENCE_TAG) {

if (TAG(fst) == FAIL) { *id_eqv = false; return fst; }

else {

crcn c = compose(fst, s2->fst, id_eqv, fvs);

*id_eqv = false; return MK_SEQ(c, UNTAG_SEQ(seq)->snd); }

} else if (TAG(snd) == FAIL) {

*id_eqv = false; return (TAG(fst) == FAIL ? fst : snd); }

} else if (TAG(fst) == HAS_2ND_TAG) {

snd_tag tag1 = UNTAG_2ND(fst)->second_tag; snd_tag tag2 = UNTAG_2ND(fst)->second_tag;
if (tag1 = REC_COERCION_TAG || tag2 = REC_COERCION_TAG) {

int i = assoc_stack_find(as, c1, c2);

if (i < 0) {

assoc_stack_push(as, c1, c2, NULL); new_id_eqv = true;

crcn c = (tag1 == REC_COERCION_TAG) ?

compose(REC_COERCION_BODY(c1), c2, &new_id_eqv, fvs):

compose(c1, REC_COERCION_BODY(c2), &new_id_eqv, fvs);

crcn mu = assoc_stack_pop(as);

if (!*new_id_eqv) *id_eqv = false;

if (mu == NULL) return c;

*fvs -= 1;

if (*fvs = 0 && new_id_eqv) { return ID }

else { REC_COERCION_BODY_INIT(mu, c); return mu; }

else { crcn mu = assoc_stack_ref(as, i);

if (mu = NULL) {*fvs += 1; mu = MK_REC_CRCN();

assoc_stack_set(as, i, mu); return mu; }

else { return mu; }}}

else if (tag1 == FUN_COERCION_TAG) {

return compose_fun(fst, snd); }

else if (tag1 == REF_COERCION_TAG) {

ref_crcn r1 = UNTAG_REF(fst);

ref_crcn r2 = UNTAG_REF(snd);

if (read == ID && write == ID) return ID;

else {

crcn c1 = compose(r1->read, r2->read);
crcn c2 = compose(r2->write, r1->write);
return MK_REF_COERCION(c1, c2); }}

else { // Must be tuple coercions

return compose_tuple(fst, snd); }}

else { raise_blame(UNTAG_FAIL(fst)->lbl); }

}

Figure 15. The compose function for normalizing coercions.

Toward Efficient Gradual Typing PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA

B Semantics of a Gradual Language
Figure 17 gives the semantics GTLC+ for the GTLC+ includ-
ing functions, proxied references, and pairs but excluding
equirecursive types. The type system is the standard one for
the gradually typed lambda calculus [36, 47, 50]. The oper-
ational semantics, as usual, is expressed by a translation to
an intermediate language with explicit casts.

Consider the source program in Figure 16 which calculates
the value 42 by applying the add1 function, byway of variable
f, to the integer value 41. The type of add1 does not exactly
match the type annotation on f (which is Dyn → Dyn) so the
compiler inserts the cast:

(cast add1 (Int → Int) (Dyn → Dyn) l2)

The application of f to 42 requires a cast on 42 from Int to
Dyn. Also, the return type of f is Dyn, so the compiler inserts
a cast to convert the returned value to Dyn to satisfy the type
ascription.
As mentioned in section 2 we consider to approaches

to the implementation of runtime casts: traditional space-
inefficient casts which we refer to as type-based casts and
space-efficient coercions. For type-based casts, the dynamic
semantics that we use is almost covered in the literature. We
use the lazy-D cast semantics which is described by Siek
and Garcia [48]. (They were originally described using co-
ercions by Siek et al. [49].) The distinction between lazy-D
and the more commonly used lazy-UD semantics [66] is not
well-known, so to summarize the difference: in lazy-D, arbi-
trary types of values may be directly injected into type Dyn,
whereas in lazy-UD, only values of a ground type may be
directly injected intoDyn. For example, Int andDyn → Dyn
are ground types, but Int → Int is not.
The one missing piece for our purposes are the reduc-

tion rules for proxied references, which we adapt from the
coercion-based version by Herman et al. [36]. In this setting,
proxied references are values of the form (v : Ref T1 ⇒ℓ

Ref T2). The following are the reduction rules for reading
and writing to a proxied reference.

!(v : Ref T1 ⇒ℓ Ref T2) −→ !v : T1 ⇒ℓ T2

(v1 : Ref T1 ⇒ℓ Ref T2) := v2 −→ v1 := (v2 : T2 ⇒ℓ T1)

Regarding coercions, the dynamic semantics that we used
is less well-covered in the literature. Again, we use the lazy-
D semantics of Siek et al. [49], but that work, despite using
coercions, did not define a space-efficient semantics. On the
other hand, Siek et al. [52] give a space-efficient semantics
with coercions, but for the lazy-UD semantics. To this end,
they define a normal form for coercions and a composition
operator that compresses coercions. Here we adapt that ap-
proach to lazy-D, which requires some changes to the normal
forms and to the composition operator. Also, that work did
not consider mutable references, so here we add support for
references.

Figure 17 defines a representative subset of the types and
coercions used in Grift’s intermediate language. The figure
also defines the meet operation and the consistency relation
on types and the composition operator on coercions.
Space-efficient coercions are defined by a grammar con-

sisting of three rules that enable coercion composition by the
composition operator defined in Figure 17. Let c,d range over
space-efficient coercions, i range over final coercions, and д
range over middle coercions. Space-efficient coercions are
either the identity coercion ι, a projection followed by a final
coercion (I?p ; i), or just a final coercion. A final coercion is
either the failure coercion ⊥Ip J , a middle coercion followed
by an injection (д ; I !), or just an intermediate coercion. An
intermediate coercion is either the identity coercion ι, the
function coercion c → d , the tuple coercion c × d , the refer-
ence coercion Ref c d , where c is applied when writing and
d is applied when reading. The main difference between the
lazy-D coercions shown here and those of Siek et al. [52] is in
the injection I ! and projection J?p coercions, which take any
injectable type (anything but Dyn) instead of only ground
types. This change impacts the coercion composition opera-
tion, in the case where an injection I ! meets a projection J?p
we make a new coercions whose source is I and target is J
with the coercion creation operation ⟨I ⇒p J ⟩ (Figure 17).

The following is the syntax of Grift’s intermediate lan-
guage.

u ::= k | a | λx .M | (u,u)

v ::= u | (v,v) | u⟨д ; I !⟩ | u⟨c → d⟩

b ::= blamep | error

M,N ::= b | v | x | M N | (M,M) | (fstM) | (sndM) |

M ⟨c⟩ | refM | !M | M :=N

Figure 18 defines the dynamic semantics. The language forms
refM , !M , andM :=N are for allocating, dereferencing, and
updating a proxied pointer, respectively. Regarding the defini-
tion of values, the value formu⟨Ref c d⟩ represents a proxied
reference whereas an address a is a regular reference.
The dynamic semantics is given by four reduction rela-

tions: cast reductions, stateless reductions, statefull reduc-
tions, and configuration reduction. The heap µ maps an ad-
dress to a value.

The cast reduction rules define the semantics of applying
a cast to a value. Space efficiency is achieved with the re-
duction that takes a coerced value u⟨i⟩ and a coercion c and
compresses the two coercions to produce the coerced value
u⟨i # c⟩.

Regarding the statefull reduction rules, for dereferencing
a reference there are two rules, one for raw addresses and the
other for a proxy. Thus, an implementation must dispatch on
the kind of reference. If it’s an address, the value is loaded
from the heap. If it’s a proxy, the underlying reference is
dereferenced and then the proxy’s read coercion c is applied.
The story is similar for writing to a proxied reference.

PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA Andre Kuhlenschmidt, Deyaaeldeen Almahallawi, and Jeremy G. Siek

Source Program:
(let ([add1 : (Int → Int)

(lambda ([x : Int]) (+ x 1))])

(let ([f : (Dyn → Dyn) add1])

(ann (f 41) Int)))

After Cast Insertion:
(let ([add1 (lambda (x) (+ x 1))])

(let ([f (cast add1 (Int → Int) (Dyn → Dyn) L1)])

(cast (f (cast 41 Int Dyn L2)) Dyn Int L3)))

Figure 16. An example of the Grift compiler inserting casts. The L1, L2, etc. are blame labels that identify source code location.

Types and coercions
Base Types B ::= Int | Bool | . . .
Injectables I , J ::= B | T → T | T ×T | Ref T
Types T ::= Dyn | I
Coercions (in normal form) c,d ::= ι | (I?p ; i) | i
Final Coercions i ::= ⊥Ip J | (д ; I !) | д
Middle Coercions д ::= ι | c → d | c × d | Ref c d
Identity-free Coercions f ::= (I?p ; i) | (д ; I !) | c → d | c × d | Ref c d | ⊥Ip J

Consistency T ∼ T

Dyn ∼ T T ∼ Dyn B ∼ B

T1 ∼ T2

Ref T1 ∼ Ref T2

T1 ∼ T3 T2 ∼ T4

T1 → T2 ∼ T3 → T4

T1 ∼ T3 T2 ∼ T4

T1 ×T2 ∼ T3 ×T4

Meet operation (greatest lower bound) T ⊓T

Dyn ⊓T = T ⊓ Dyn = T

B ⊓ B = B

(T1 ×T2) ⊓ (T3 ×T4) = (T1 ⊓T3) × (T2 ⊓T4)

(T1 → T2) ⊓ (T3 → T4) = (T1 ⊓T3) → (T2 ⊓T4)

Ref T1 ⊓ Ref T2 = Ref (T1 ⊓T2)

Coercion creation (T ⇒l T) = c

(B ⇒l B) = (Dyn ⇒l Dyn) = ι

(I ⇒l Dyn) = ι ; I !

(Dyn ⇒l I) = I?l ; ι

(T1 → T2 ⇒
l T ′

1 → T ′
2) = (T ′

1 ⇒l T1) → (T2 ⇒
l T ′

2)

(T1 ×T2 ⇒
l T ′

1 ×T ′
2) = (T1 ⇒

l T ′
1) × (T2 ⇒

l T ′
2)

(Ref T ⇒l Ref T ′) = Ref (T ′ ⇒l T) (T ⇒l T ′)

Coercion composition c # d = r

(д ; I !) # (J?p ; i) = д # (⟨I ⇒p J ⟩ # i)
c → d # c ′ → d ′ = (c ′ # c) → (d # d ′)

c × d # c ′ × d ′ = (c # c ′) × (d # d ′)

Ref c d # Ref c ′ d ′ = Ref (c ′ # c) (d # d ′)

(I?p ; i) # c = I?p ; (i # c)
д1 # (д2 ; I !) = (д1 # д2) ; I !
ι # c = c # ι = c

д # ⊥Ip J = ⊥Ip J # c = ⊥Ip J

Figure 17. Types, coercions, and their operations.

Toward Efficient Gradual Typing PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA

Runtime Structures
µ ::= ∅ | µ(a 7→ v)
E ::= F | F [□⟨f ⟩]
F ::= □ | E[□M] | E[v □] | E[(□,M)] | E[(v,□)] |

E[(fst□)] | E[(snd□)] | E[ref□] | E[!□] |

E[□:=M] | E[v :=□]

Cast reduction rules M −→c N
F [u⟨ι⟩] −→c F [u]

F [u⟨i⟩⟨c⟩] −→c F [u⟨i # c⟩]
F [(u,u ′)⟨c × d⟩] −→c E[(u⟨c⟩,u ′⟨d⟩)]

F [u⟨⊥Ip J ⟩] −→c blamep

Stateless reduction rules M −→e N

E[(λx .M) v] −→e E[[x := v]M]

E[u⟨c → d⟩v] −→e E[u (v ⟨c⟩)⟨d⟩]
E[(fst (v,v ′))] −→e F [v]
E[(snd (v,v ′))] −→e F [v ′]

E[blamep] −→e blamep if E , □
E[error] −→e error if E , □

Statefull reduction rules M, µ −→s N , µ

E[refv], µ −→s F [a], µ(a 7→ v) if a < dom(µ)
E[!a], µ −→s F [µ(a)], µ

E[!(a⟨Ref c d⟩)], µ −→s F [(!a)⟨d⟩], µ
E[a:=v], µ −→s F [a], µ(a 7→ v)

E[a⟨Ref c d⟩:=v], µ −→s E[a:=v ⟨c⟩], µ

Configuration reduction rules M, µ −→ N , µ

M −→X N X ∈ {c, e}

M, µ −→ N , µ

M, µ −→s N , µ
′

M, µ −→ N , µ ′

Figure 18. Semantics of the intermediate language of Grift.

Regarding the configuration reduction rules, they simply
enable the other three classes of rules and pass along the
heap as appropriate.

PLDI ’19, June 22–26, 2019, Phoenix, AZ, USA Andre Kuhlenschmidt, Deyaaeldeen Almahallawi, and Jeremy G. Siek

Figure 20 Figure 19

C More Performance Evaluation
Figures 19 and 20 give the results for the rest of the bench-
marks that were not included in Figure 7.

	Abstract
	1 Introduction
	2 Background on Gradual Typing
	3 The Grift Compiler
	3.1 Value Representation
	3.2 Implementation of Coercions

	4 Performance Evaluation
	4.1 Experimental Methodology
	4.2 The Runtime Cost of Space Efficiency
	4.3 Gradual Typing Overhead and Comparison
	4.4 Threats to Validity

	5 Future Work
	6 Conclusion
	Acknowledgments
	References
	A Values, Macros, and Compose
	B Semantics of a Gradual Language
	C More Performance Evaluation

